
www.manaraa.com

Distributed Data Management Services for Dynamic Data Grids

Houda Lamehamedi, Boleslaw K. Szymanski, Brenden Conte
Department of Computer Science,
Rensselaer Polytechnic Institute,

Troy, NY 12180
{lamehh, conteb, szymansk}@cs.rpi.edu

Abstract

Data grids are middleware systems that enable users
and applications to locate, access, and place large
numbers of data sets in geographically distributed
storage sites. In most existing and deployed grid sys-
tems however, control of the resources is centralized
and usually handled by system administrators. Such
configurations hinder dynamic and scalable expan-
sion of the Grid infrastructure and resources. We
propose a new lightweight distributed, adaptive, and
scalable data Grid middleware that provides trans-
parent, fast, and reliable access to data and storage
resources in data grids. At the core of our approach
are dynamic data and replica location and placement
techniques that adapt replica location and access to
the continuously changing network connectivity and
users behavior. The system is fully distributed and
self configuring. In this paper we present the design
of the system, the algorithms we use to implement
the data management services, and demonstrate the
scalability and performance of the overall system.

1 Introduction

Most of scientific applications require accessing, an-
alyzing, and storing large amounts of data. Such ap-
plications warrant special treatment to scale across
distributed computing platforms like the grid and
avoid data access bottlenecks. In areas such as ge-
nomics [2], drug discovery [2], high energy physics [9],
astrophysics [22], and climate change modelling [2, 8],

large data sets are generated, collected, and stored in
geographically distributed locations [1, 3, 6, 7, 9, 10,
24]. This data is then accessed for further processing
at different additional sites. Due to the actual, and
in fact growing, size of such data sets, a management
framework is needed to ensure fast and reliable access
to users in remote and distributed locations.

In most existing and deployed grid systems and
platforms, software and hardware resources are cen-
trally managed [1, 3, 7]. System administrators are
responsible for installing software, granting and con-
trolling access to resources. Such configurations, hin-
der dynamic and scalable expansion of the Grid in-
frastructure and resources. New nodes cannot be
added to the grid without the authorization and the
intervention of system administrators, nor can they
leave the grid without prior system pre-configuration.
In the case of data grids storage resources are dedi-
cated resources and cannot be taken off-line without
prior configuration and notice to the users. Enabling
dynamic node addition and deletion while providing
efficient access to resources on the data grid presents
considerable challenges to system designers. Grids
are made up of a diverse set of machines and instru-
ments with different capacities and purposes. How-
ever, to increase the power of the grid, and increase
its versatility, the grid needs to be extended to in-
corporate in addition to supercomputers and ded-
icated instruments available in research centers, a
much larger number of available commodity comput-
ers. Doing so, on the one hand, enables the forma-
tion of an ad-hoc configuration and potentially the

1



www.manaraa.com

exploitation of more available resources based on de-
mand. On the other hand this configuration requires
a more flexible and extensible approach to manage a
dynamic infrastructure.

To alleviate and address some of these issues we
propose an adaptive and scalable lightweight data
management framework that enables users to dynam-
ically join and leave the grid. The middleware pro-
vides transparent, fast, and reliable access to data
and storage resources on the Grid. It relies on an
application level overlay network structure to iden-
tify the fastest paths for locating and accessing data.
In our approach, the application level overlay net-
works are incrementally built and dynamically up-
dated to adapt to changes in users’s and applica-
tions’s behavior and access patterns. We use an ad
hoc dynamic spanning tree overlay network as it can
be easily adapted to different topologies and changed
dynamically. The overlay network is a virtual con-
nectivity graph in which the computational nodes
are mapped as Vertices and their connection links as
edges. Abstracting the underlying infrastructure into
these overlay connections enables more flexible man-
agement and deployment of higher level techniques.

Each node in the graph maintains a routing table
that contains a list of neighbors to which data access
requests are forwarded. When a node first joins the
platform, it attaches itself to a parent node. Thus, a
hierarchical graph is created and a spanning tree con-
necting the grid nodes is built. The routing table con-
tents at each node are dynamically updated at run-
time depending on network resource availability and
the location of popular data sets. Each participating
node or member of the network is aware of the loca-
tion of its closest neighbors but does not have a global
view of where data is located or how far and distrib-
uted are the rest of the nodes. Similar to the peer-
to-peer networks approach [28, 11, 15, 20, 21, 23],
and based on the topology of the overlay network,
each node monitors its connectivity to and activity
with its neighbors and collects statistics about in-
coming access requests. This statistical data is then
used to decide whether or not to create local replicas
of the requested data. The middleware we have de-
signed consists of autonomous agents running at each
node. Each agent is composed of a monitor, a replica

manager, and a storage manager. The monitors feed
the collected statistics about resource availability and
data/replica locality to the decision-making compo-
nents at each node, the replica and storage managers.
The replica manager takes into consideration data ac-
cess patterns, data location, latency, and bandwidth
availability before deciding on either replicating the
requested data or not and where to fetch the data
from. The replication serivce is driven by the loca-
tion of storage resources, network resources availabil-
ity, and user access patterns and behavior. We will
explain in further details the concepts and theory be-
hind our approach in Section 3, and present the archi-
tecture of the system. In this work however, we focus
on the study of the replication service and the cost
model we use to manage the creation and removal of
replicas.

The benefits and applicability of our approach have
been proved very successful and the results were re-
ported in [14, 13]. In our previous work we devel-
oped a Grid Simulator, GridNet, to simulate data
movements, user requests, and replication techniques
in Data Grids. The simulator allowed us to evalu-
ate our design and cost models, and our results have
shown that proactive replication improved the overall
performance of resource usage on the Grid by up to
30%.

Our proposed framework can be easily integrated
with existing low level grid services and adheres to es-
tablished standards in grid computing. The remain-
der of this paper is organized as follows: in Section
2 we present a summary of existing work and state
of the art. In Section 3 we give an overview of our
proposed system, present our approach and the ana-
lytical cost model we adopted. Section 4 provides re-
sults that show the system’s performance in real-time
environment, and we give our conclusions in Section
5.

2 Background And Related
Work

With the clear increase in data production, archiv-
ing, analysis, and sharing needs within the scientific

2



www.manaraa.com

community, there has been a rise in interest in de-
veloping and extending data grid infrastructures to
provide users with high level data management ser-
vices and transparent access to this data [17, 3, 9,
16, 12, 22, 23]. Different studies were conducted to
model scientific experiments settings and configura-
tions, such as the CMS and ATLAS experiments at
the Large Hadron Collider, the Laser Interferometer
Gravitational Observatory and the Sloan Digital Sky
Survey [29, 9, 23]. These studies led to the initia-
tion of many projects such as the GriPhyN [29] and
the EU DataGrid [27]. Many projects, such as the
GriPhyN [29] and the EU Data Grid [3] have devel-
oped data grid platforms. Other projects have fo-
cused more on simulations [10, 1].

In existing implementations of data grid services in
Globus [7, 5, 25, 26] and the EUDataGrid [10, 3], ded-
icated nodes are responsible for storing and maintain-
ing replica location indices throughout the system.
These implementations though, offer a static and cen-
tralized approach to managing replicas on the grid.
Dynamic replication presents a more attractive ap-
proach as decisions are made based on current access
patterns and availability of resources. This however
incurs some costs from the creation of new replicas
and the continuous evaluation of resources availabil-
ity. In [18] the authors have studied different repli-
cation strategies coupled with job scheduling tech-
niques. Their results show that taking into consid-
eration the location of data instead of focusing only
on available and idle cpu cycles yields better perfor-
mance. In [19] the authors study the performance of
a somewhat distributed and dynamic replica creation
mechanism in peer to peer environments. Their ap-
proach outperformed static replication in most cases
but with the risk of creating more replicas than nec-
essary, thus consuming even more resources. Optor-
sim is a grid simulator that was developed to study
the efficiency of different replication algorithms in a
grid [4]. The studies conducted with Optorsim com-
bined job scheduling with data access optimization,
and showed that scheduling techniques that take as
input the availability and location of data outperform
the classical scheduling methods.

In our work we take a different approach by de-
coupling data and replica management from com-

putational job scheduling, providing a stand-alone
framework that is mainly used to provide efficient
access to data but could also be integrated with a
job scheduler if needed. The main goal of our ap-
proach is to create a distributed mechanism to repli-
cate and manage access to data that is based on eval-
uating costs and gains of resource utilization and ac-
cess performance. The work we present in this paper
first started with our initial investigations of dynamic
replication strategies in grid environments [13, 14].
Which then led us to the development of a data
grid simulator GridNet. This simulator provides
a modular simulation framework through which we
can model different Data Grid configurations and re-
source specifications. The simulations allowed us to
perform initial verifications of the design and eval-
uate the performance of our strategies. The results
show that our replication technique yields better per-
formance with larger file sizes and with an appro-
priate allocation of storage space. Our results are
very promising and show that dynamic replication
improves dramatically the performance of the overall
Data Grid.

As stated above most existing systems have focused
on job scheduling vs. data location. In such sce-
narios, Data placement is coupled with computation
and job scheduling. While computational jobs are
an important factor in deciding where to place data,
building a data management middleware that pro-
actively places and stages data in strategic locations
and adapts data distribution to continuously chang-
ing user and network behavior, is a more general and
comprehensive approach.

In the next sections we provide more details about
the design and implementation of our proposed
framework, and present the results of our experi-
ments.

3 System Design

Our proposed framework provides incremental scala-
bility and robustness to ad hoc dynamic data grids.
The application level data management overlay, can
handle a continuously changing number of participat-
ing nodes and failures without affecting the overall

3



www.manaraa.com

performance or efficiency of the replica management
service. An added advantage of this approach is the
elimination of centralized control of data and replica
registration, and the balance of data discovery and
lookup among different nodes. Our prototype was
implemented in Java, using sockets to enable message
passing between the distributed grid nodes. Our pro-
posed replica management service offers transparent
data replication based on a runtime system that eval-
uates the access cost and performance gains of repli-
cation before moving or copying any data. The goal
being to lower users access time and optimize the us-
age of network and system resources: bandwidth and
storage space.

The access cost of the replication scheme is calcu-
lated based on multiple factors, such as accumulated
read/write statistics, network latency, response time,
bandwidth, and replica size, averaged over selected
time scales. This cost changes during the program
execution and from one application to another, so
it is constantly reevaluated to dynamically minimize
data access costs by changing and adapting the num-
ber and placement of replicas.

3.1 System Architecture

The middleware consists of autonomous agents that
run at each participating grid node. Each agent is
composed of:

1. Resource Monitoring Service (RNS): responsible
for collecting statistics about resource usage and
data access requests,

2. Replica Management Service (RMS): responsible
for creating local replicas based on a cost func-
tion and choosing the nearest node containing a
replica of a requested data set,

3. Resource Allocation Service (RAS): responsible
for allocating space for newly created replicas
and de-allocating space from the least frequently
and last accessed locally stored replicas,

4. Routing/Connectivity Service (RS): responsible
for routing outgoing messages and managing in-
coming messages, managing data transfers, as

well as monitoring and managing a node’s con-
nectivity to its neighbors.

The system architecture is shown in figure 1. The
monitoring service feeds the collected statistics about
resource availability and data/replica location to
the decision-making components at each node, the
replica and storage managers. The replica manager
takes its input statistics from the monitoring service
and uses a cost function to evaluate gains vs costs
before deciding on whether to replicate the requested
data or not.

Resource
Allocation

Service

Replica
Management

Service

Resource
Monitoring

Service

Resource
Storage

Connectivity
Routing /

Service

Lowel level software
Operating System

Bandwidth Memory

Figure 1: Architecture and Design of the Data Man-
agement Middleware

In our approach we treat replica management as
an optimization problem in which important para-
meters of the system, such as read/write access pat-
terns, network performance etc., are taken into con-
sideration when deciding the creation and the place-
ment of replicas. The replication service determines
the placement, and location of replicas in the system.
These decisions are guided by a cost model that, at
runtime, evaluates the maintenance cost and access
performance gains of creating a replica.

4



www.manaraa.com

3.2 Data Access And Replica Loca-
tion Algorithm

When access to a data set is needed, a request is
issued. This request starts a search process. This
search is supposed to reach all the possible nodes
that have a copy of this data set. In case multi-
ple locations are discovered the requester needs to be
provided with all the locations of the required data
and choose the appropriate source node. In existing
data grid implementations, dedicated nodes store in-
formation about the locations of possible sources. In
a more dynamic platform, new nodes might join the
grid and some nodes might leave. Thus the need for
an adaptive, more dynamic approach to discover, lo-
cate, and access data. Similar attempts were used to
develop search protocols for peer-to-peer data shar-
ing. Examples of such protocols are the flooding
algorithm used in Gnutella [28], the centralized al-
gorithm used in Napster [15], and the distributed
hash-table based protocol used in CAN, Pastry and
Tapestry [20, 21, 23]. Many studies have shown that
using a combination of flat and hierarchical topolo-
gies give the best performance for message broadcast-
ing [15, 11].

In our work we use an ad hoc dynamic spanning
tree overlay network to route access requests and lo-
cate data in a dynamic grid platform as they can
be easily adapted to different topologies and changed
dynamically. Ad hoc spanning trees have been tried
and proven to perform and scale well in peer-to-peer
systems [11].

To build the distributed spanning tree overlay net-
work two algorithms are needed. The first one is an
algorithm for maintaining the tree and accounting for
inclusion of new nodes joining the tree, and deletion
of nodes leaving. Another one is a search algorithm
for locating data in the tree.

The tree is constructed starting from a root node
that always stays on line and alive. When joining
the grid, a node is added through an existing grid
node by attaching to it as a child node. Existing grid
nodes are published in a web page or could be ac-
cessed through a web service. New nodes choose from
the list of available nodes using some metric such as
geographical proximity of a node to which the new

node needs to attach. For example a node can choose
a parent node which is in the same domain. This ap-
proach creates an inherent tree structure. When a
node leaves the tree, it sends a notification message
to its parent and children. The parent removes the
departing node from its children’s list. The children
nodes contact the parent node (their grandparent),
and rejoin the tree as its children nodes. To avoid
having a disconnected tree in case a node fails and
disconnects before sending any notification messages,
each node periodically checks if its parent is still alive.
If it is not then the node tries to rejoin the tree by
attaching itself to its grandparent node. To rejoin
the tree by choosing a new node to attach to from
the list of published nodes would take more time and
would be costlier. Each node maintains a list of con-
nections to its parent and child nodes, along with
their physical network properties such as bandwidth
and latency. In addition to that, it also needs to keep
track of its grandparent node.

Searching for and locating data starts by a data
access request at a given node. The search starts at
the local data catalog to check if the data is stored
and available locally. If it is not, then the node sends
a request message to its parent and children. Upon
receiving a request the node first checks the source
of the request. If the request is coming from a child
node, then the search is continued up the tree, and
the request is forwarded to the current node’s par-
ent. If the request was received from a parent node,
then the search goes down the tree, and the request
is forwarded to the current node’s children. When
the request reaches a node that contains the data,
a notification message is sent to the initial requester
before initiating data transfer.

The algorithm is also designed to include, within
the notification message, a list of different target lo-
cations where the requested data could be retrieved.
This case occurs in a situation where a node pub-
lishes the list of data sets that it stores locally, and
sends that information to its parent node. Thus, cre-
ating a global view of data stored within a subtree at
the root of that subtree, and creating a global cata-
log at the root of the tree. After receiving a list of
possible locations, the local data management service
uses network performance tools to choose the source

5



www.manaraa.com

that would yield the best data transfer performance.
However, in this paper we concentrate our efforts on
replicating data files and not replica location indices.

3.3 Replica Management Service

The replica service continuously adapts the configu-
ration of the replica layout to the needs and require-
ments of the users and to the network performance
reflected in the cost model. The replica manage-
ment service is responsible for initiating data replica-
tion, when needed. In addition, once multiple repli-
cas of files are distributed at multiple locations, the
data management service at each node transparently
locates replicas with the potentially shortest access
time to the requested data. Obviously, given the dy-
namic nature of the Grid, the service can only provide
its best estimate given its current view of the Grid.
It also determines whether to access a replica or to
create a new one. The Grid environment is highly
dynamic. The resources availability and network per-
formance change constantly and data access requests
also vary with each application and each user. Ac-
cordingly, new replicas may be added at different lo-
cations and deleted from locations where they are no
longer needed. In figure 2 shows the architecture and
design of the replica management service.

3.4 Cost Model

Replica creation is mostly based on data access re-
quest statistics. These statistics are gathered by the
resource monitoring service, RNS, at each node. The
algorithm used by the replica management service,
RMS, currently takes as input the frequency of data
access requests by users. In this work we only con-
sider read-only data sets. Our cost model initially
introduced in [14], incorporates and takes into con-
sideration more parameters. In this paper however
we only use a limited version of the cost model.

In addition to accumulated access frequencies,
other parameters that can also be taken into consid-
eration while creating and placing replicas are: the
storage capacity and availability at a given grid node
and the frequency of cost estimation. The latter pa-
rameter is estimated based on the history of the data

Dynamic DataStatic Data

CPU
Memory
Disk
Netowork topology

CPU status
Memory status
Disk space
Available bandwidth
Latency
Topology

Access frequency, 
local data catalog API,...

RMS

Application / User Data

Operating System 

Figure 2: Replica Management Service Architecture

accesses requested at a given site.
To calculate data access cost at a given node in the

grid for a given data object we associate each data
object i at each node v with a nonnegative read rate
λv,i and a nonnegative write rate µv,i that represent
the traffic generated within this node’s local domain
related to object i.

If there is no local replica for object i, then the
total data transfer cost for this object at node v is:

costv,i = (λv,i + µv,i)size(i)d(v, r) (1)

where r is the node containing the object i and d(v, r)
is the sum of the edge costs along the path from v to
r such that

d(v, r) =
1

bandwidth(v, r)
,

where bandwidth(v1, v2) is the total available band-
width between nodes v1, v2.

Creating a replica at node v decreases the access
cost for all nodes that belong to the same subtree.
Let N be the set of all nodes, and let Tv be the
partition of nodes that would be serviced by v for

6



www.manaraa.com

future access requests to object i. Indeed, creating
a replica at v decreases the read cost of each node
in Tv by size(i)d(v, c(v, r)) and increases the write
cost of each node in the N −Tv by size(i)d(v, c(v, r))
where r is the closest replica location, but it does not
change other costs.

Because we currently do not consider write re-
quests, the cost model only accounts for read access
requests. Accumulated access requests at node v are
added up and stored in the variable fv(i). To com-
pute the cost of accessing a data set i, the current
node treats all accumulated incoming transient re-
quests as locally issued requests and estimates the
total data transfer cost based on its local view. The
estimated cost is:

Costv,i = fv(i)size(i)d(v, c(v, r)) (2)

if Cost(v, i) > τ where τ is a threshold, then a local
replica is created. Once a replica is created, fv(i) is
re-initialized.

Another parameter taken into consideration is the
storage cost. It is computed based on the state of
the data objects, their request frequencies, and their
size. The state of data objects is defined as busy, ac-
tive, passive, or obsolete. The first state is assumed
when the local data replica is being accessed. The
second state describes local replicas that have been
accessed recently within a predefined time-frame win-
dow. Replicas that have not been accessed within
that time-frame window are categorized as passive.
If a file is found out of date following a consistency
check, it is marked as obsolete. Each replica is also as-
signed a weight index that indicates how much space
it is occupying.

The storage cost is a linear combination of these
parameters. When the replica management decides
to create a local replica, it first checks whether stor-
age space is needed and available. If it is needed but
not available, then based on the ranking of existing
replicas, the system decides whether to delete some
of the existing replicas to make space for a new one
or to decline the creation of the new replica. To com-
pare the cost of storage used by existing replicas to
the cost of storage needed by the new one, the system
ranks the latter as busy and uses the method used for

evaluating costs of new replicas to assign it a storage
cost. If there are enough obsolete, passive or active
replicas with lower improvements in data access time
than the new replica can provide (as evaluated by the
cost model), then these existing replicas are replaced
to make space for the new replica.

4 Experiments And Results

We conducted experiments to test the efficiency of
the spanning tree overlay on a dynamic grid platform
with and without replication enabled. The experi-
ments consisted of using a 31 node grid and placing
the nodes issuing access requests at the bottom of the
tree as leaves. In addition to running the ad-hoc data
management agent, each leaf node runs a client host
that runs a script which takes as input a list of data
sets, and then posts read requests for these data sets
according to a selected access pattern. We use the
Poisson distribution to model request generation with
different arrival rates at each client host. While each
node has the ability to issue requests, during these
experiments only leaf nodes do so to make sure the
traffic load generated travels along the longest paths.
Figure 3 shows the modelling and set up of the ex-
periments. The spanning tree of the grid nodes was
constructed using the algorithms described in 3.2. To
create the overlay network, the join algorithm used
the evolving list of newly added nodes which creates
a more balanced tree as shown in figure 3.

Each node has some storage space available where
it can store a group of data sets. Initially only leaf
nodes store different sets of data each. As shown
in figure 3, the rightmost and leftmost nodes in the
bottom level of the tree store each a Group of Inter-
esting Files (GIF). Each GIF is composed of 10 files,
with sizes ranging from 10 to 100MBytes. The rest
of the nodes at the bottom level store each a set of
files, with an average of 10 files per node. The total
number of regular files is 80, with some of the files
replicated at multiple nodes. Regular file sizes also
ranged from 10 to 100MBytes. Throughout different
stages of the experiments, results are collected for dif-
ferent levels of replication. The tests are conducted
in multiple phases. In the first phase of testing, the

7



www.manaraa.com

Groupe 1 of
Interesting Files Interesting Files

Groupe 2 of

Rep2

Rep4

Rep3

Rep1Rep1

Rep2

Rep3

Rep4

Root

Figure 3: Experimentation Design

access request script is executed on the client hosts
located at the leaf nodes. In the second phase when
data replication is triggered by data popularity at the
higher level in the tree, and new replicas creations are
finished, the scripts are executed again with the dif-
ferent conditions for subsequent replica creation at
different levels of the tree and results are compared.
The total number of phases depends on the height of
the tree, in our case the experiments are conducted
in 4 phases. Popular data sets are first replicated one
level up in the tree and then replicated at the second
level, and so on until they reach the top of the tree.

In lack of real trace data, we designed the experi-
ments in a way to emulate existing access patterns
within the scientific community. We designated a
group of data sets as Interesting Files, meaning that
most users were highly interested in those files at a
given time. This pattern follows a natural human
characteristic, that is when interesting data is pub-
lished most scientists would be highly interested in
checking it out. But their interest might shift to an-
other group of Interesting Files afterwards.

In the first set of experiments we study the im-

provement of access performance for popular data
with different levels of replication vs. no replica-
tion. The performance is measured by the number
of hops data access request messages go through be-
fore reaching a source node containing a copy of the
requested data. The results are presented in figure 4.
The results show that data access performance im-
proves greatly for popular data with higher levels of
replication.

Figure 4: Replication Performance for Popular data

In the next set of experiments, we study the effect
of replication on data access performance with differ-
ent access ratios for popular data ranging from 10%
to 90%. During the experiments client hosts run-
ning at leaf nodes used different access patterns for
tow distinct groups of interesting files, and similarly
for multiple other data sets stored at different nodes.
The focus of the experiments was on the access ratio
of the two Groups of Interesting Files vs. the ac-
cess ratio of the remaining set of files. The results of
different access scenarios using replication were com-
pared to the same scenarios with no replication. A
summarized plot in figure 5 shows the accumulated
test results for the different access rations with dif-

8



www.manaraa.com

ferent replication levels for different data sets.

Figure 5: Replication Performance for Different
Replication Levels

The results show that data access performance im-
proves considerably with higher levels of replication.
Replication improves data location and access per-
formance of the overall requests issued in the system
from a minimum of 10% to 22%. The results also
show that when the ratio of access requests for a
given GIF increases, and the group is replicated in
the system accordingly, a subsequent drop in popu-
larity of that group does not result in an immediate
improvement in access for the later data sets.

5 Conclusion

In this paper we have introduced a new middleware
for managing data in distributed dynamic platforms
such as data grids. We have proposed the use of a
spanning tree as an overlay network, developed the
algorithms to build and maintain the tree. We have
also introduced new data management services to dy-
namically manage replica creation and deletion in a

grid environment. Additionally we have implemented
the cost model used by the replica management ser-
vices. The middleware has been tested in a real envi-
ronment. The experiments we conducted show that
the use of an ad-hoc spanning tree as an overlay net-
work to access data combined with dynamic repli-
cation techniques is very cost efficient and produces
considerable performance improvements. The perfor-
mance gains ranged from a minimum of 10% to over
22%.

Our cost efficient replica management middleware
is a framework for scientific collaborations where re-
searchers from different locations can start a virtual
grid to share their results and findings which they
can join and leave at different times. In our future
work we will continue developing our cost model to
include and take into consideration more system pa-
rameters. We will also test our approach on larger
environments and use different performance metrics
such as bandwidth consumption and storage cost.

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. L.
Chervenak, I. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnal, and S. Tuecke, Data
management and transfer in high performance
computational grid environments, Parallel Com-
puting Journal 28 (2002), no. 3, 749–771.

[2] B. Allcock, I. Foster, V. Nefedova, A. Cher-
venak, E. Deelman, C. Kesselman, J. Leigh,
A. Sim, A. Shoshani, B. Drach, and D. Williams,
High-performance remote access to climate sim-
ulation data: A challenge problem for data grid
technologies, In Proc. of the SuperComputing
Conference, November 2001.

[3] D. Bosio, J. Casey, A. Frohner, and L. Guy
et al, Next generation eu datagrid data manage-
ment services, Computing in high energy physics
(CHEP2003), March 2003.

[4] D. G. Cameron, A. P. Millar, C. Nichol-
son, R. Carvajal-Schiaffino, F. Zini, and
K. Stockinger, Optorsim: a simulation tool

9



www.manaraa.com

for scheduling and replica optimisation in data
grids, CHEP 2004, Interlaken, September 2004.

[5] A.L. Chervenak, N. Palavalli, S. Bharathi,
C. Kesselman, and R. Schwartzkopf, Perfor-
mance and scalability of a replica location ser-
vice, Proc. of the International IEEE Sympo-
sium on High Performance Distributed Comput-
ing (HPDC-13), June 2004.

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salis-
bury, and S. Tuecke, The data grid: Towards an
architecture for the distributed management and
analysis of large scientific datasets, Journal of
Network and Computer Applications 23 (2001),
187–200.

[7] A. Chervenak et. al, Giggle: A framework for
constructing scalable replica location services,
Proc. of the ACM/ IEEE SuperComputing Con-
ference, November 2002.

[8] I. Foster, E. Alpert, A. Chervenak, B. Drach,
C. Kesselman, V. Nefedova, D. Middleton,
A. Shoshani, A. Sim, and D. Williams, The earth
system grid ii: Turning climate datasets into
community resources, Proc. of the American Me-
terologcal Society Conference, 2001.

[9] K. Holtman, Cms data grid system overview and
requirements, Tech. report, CERN, July 2001,
CMS Note 2001/037.

[10] W. Hoschek, J. Jaen-Martinez, A. Samar,
H. Stockinger, and K. Stockinger, Data manage-
ment in an international data grid project, Proc.
of the first IEEE/ACM International Workshop
on Grid Computing, 2000.

[11] N.R. Kaushik and S.M. Figueira, Spanning trees
for distributed search in p2p systems.

[12] G. Kola, T. Kosar, J. Frey, M. Livny, R.J. Brun-
ner, and M. Remijan, Disc: A system for dis-
tributed data intensive scientific computing, san
francisco, ca, Proc. of First Workshop on Real,
Large Distributed Systems, December 2004.

[13] H. Lamehamedi and Zujun Shentu, Simula-
tion of dynamic data replication strategies in
data grids, Proc. 12th Heterogeneous Comput-
ing Workshop (HCW2003) Nice, France, IEEE
Computer Science Press, April 2003.

[14] H. Lamehamedi, B. Szymanski, Z. Shentu, and
E. Deelman, Data replication strategies in grid
environments, Proc. 5th International Confer-
ence on Algorithms and Architecture for Paral-
lel Processing, Bejing, China pp. 378-383., IEEE
Computer Science Press, October 2002.

[15] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker,
Search and replication in unstructured peer-to-
peer networks, Proc. of the ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems, 2002, pp. 258–
259.

[16] D. Nikolow, R. Slota, J. Kitowski, and L. Skital,
Virtual storage system for the grid environment,
International Conference on Computational Sci-
ence, 2004, pp. 458–461.

[17] A. Rajasekar, M. Wan, and R. Moore, Mysrb
and srb: Components of a data grid, Proc. of the
11th International Symposium on High Perfor-
mance Distributed Computing (HPDC-11), July
2002.

[18] K. Ranganathan and I. Foster, Decoupling com-
putation and data scheduling in distributed data-
intensive applications, Proc. of 11th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing, Edinburgh, Scotland, July
2002.

[19] K. Ranganathan, Adriana Iamnitchi, and I. Fos-
ter, Improving data availability through dynamic
model-driven replication in large peer-to-peer
communities, Proc. of Global and Peer-to-Peer
Computing on Large Scale Distributed Systems
Workshop, Berlin, Germany, May 2002.

[20] S. Ratnasamy, S. Shenker, and I. Stoica, Rout-
ing algorithms for dhts: Some open questions,
IPTPS, 2002.

10



www.manaraa.com

[21] A. Rowstron and P. Druschel, Pastry: Scal-
able, decentralized object location and routing
for large-scale peer-to-peer systems, Proc. of
the 18th IFIP/ACM International Conference
on Distributed Systems Platforms, Heidelberg,
Germany, November 2001.

[22] M. Russel, G. Allen, G. Daues, I. Foster, E. Sei-
del, J. Novotny, J. Shalf, and G. von Laszewski,
The astrophysics simulation collaboratory: A
science portal enabling community software de-
velopment, Cluster Computing, no. 5(3), 2002,
pp. 297–304.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan, Chord: A scalable peer-
to-peer lookup service for internet applications,
Proc. of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Com-
puter Communications, 2001.

[24] R. Tuchinda, S. Thakkar, Y. Gil, and E. Deel-
man, Artemis: Integrating scientific data on the
grid, Proc. of the Sixteenth Innovative Applica-
tions of Artificial Intelligence, July 2004.

[25] S. Vazhkudai and J. Schopf, Using disk through-
put data in predictions of end-to-end grid trans-
fers, Proc. of the 3rd International Workshop
on Grid Computing, November 2002, Baltimore,
MD.

[26] S. Vazhkudai and J. Schopf., Using regres-
sion techniques to predict large data transfers,
The International Journal of High Performance
Computing Applications, special issue on Grid
Computing: Infrastructure and Applications 17
(2003), no. 3.

[27] The european data grid project, the datagrid ar-
chitecture 2001, http://www.eu-datagrid.org.

[28] The gnutella protocol specification,
http://www.gnutella.com.

[29] Grid physics network (griphyn),
http://www.griphyn.org.

11


